Sasha Patotski

Cornell University

ap744@cornell.edu

November 18, 2015

Definition

For $\sigma \in S_n$ define $inv(\sigma)$ to be the number of pairs (*ij*) such that i < j but $\sigma(i) > \sigma(j)$. This number $inv(\sigma)$ is called the **number of inversions** of σ .

Definition

Define the **sign** of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.

For two permutations σ, τ we have $sgn(\sigma \circ \tau) = sgn(\sigma)sgn(\tau)$.

Definition

Let $A_n \subset S_n$ be the subset consisting of even permutations. A_n is called an **alternating group** (we have proved that this is indeed a group!)

(日) (周) (三) (三)

Abstract group definition

Since most of you have seen this already, there is no reason to hide it.

Definition

A group G is a set with a binary operation $*: G \times G \rightarrow G$ called **multiplication** such that

- it's associative, i.e. (a * b) * c = a * (b * c);
- Where is an element e ∈ G, called unit, s.t. a * e = e * a = a for all a ∈ G;
- **③** for any $a \in G$ there is an element a^{-1} , called a's **inverse**, such that

$$a * a^{-1} = a^{-1} * a = e$$

Definition

A **subgroup** of a group G is a subset which is itself a group (with the multiplication induced from G).

Image: Image:

Definition

If G, H are groups, a map $\varphi \colon G \to H$ is called a **homomorphism** if

 $\varphi(a * b) = \varphi(a) * \varphi(b)$

Definition

If G, H are groups, a map $\varphi \colon G \to H$ is called a **homomorphism** if

$$\varphi(a * b) = \varphi(a) * \varphi(b)$$

• Prove that for a homomorphism φ , necessarily $\varphi(e_G) = e_H$ and $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Definition

If G, H are groups, a map $\varphi \colon G \to H$ is called a **homomorphism** if

$$\varphi(a * b) = \varphi(a) * \varphi(b)$$

- Prove that for a homomorphism φ , necessarily $\varphi(e_G) = e_H$ and $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- Let \mathbb{Z}^\times denote the group $\{1,-1\}$ with the usual multiplication of integers. Prove that it is a group.

Definition

If G, H are groups, a map $\varphi \colon G \to H$ is called a **homomorphism** if

$$\varphi(a * b) = \varphi(a) * \varphi(b)$$

- Prove that for a homomorphism φ , necessarily $\varphi(e_G) = e_H$ and $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- Let \mathbb{Z}^\times denote the group $\{1,-1\}$ with the usual multiplication of integers. Prove that it is a group.

Definition

The **kernel** of a homomorphism φ is ker $\varphi = \{a \in G \mid \varphi(a) = e\}$ The **image** of a homomorphism φ is im $\varphi = \{\varphi(a) \in H \mid a \in G\}$

- 4 同 6 4 日 6 4 日 6

Definition

If G, H are groups, a map $\varphi \colon G \to H$ is called a **homomorphism** if

$$\varphi(a * b) = \varphi(a) * \varphi(b)$$

- Prove that for a homomorphism φ , necessarily $\varphi(e_G) = e_H$ and $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- Let \mathbb{Z}^\times denote the group $\{1,-1\}$ with the usual multiplication of integers. Prove that it is a group.

Definition

The **kernel** of a homomorphism φ is ker $\varphi = \{a \in G \mid \varphi(a) = e\}$ The **image** of a homomorphism φ is im $\varphi = \{\varphi(a) \in H \mid a \in G\}$

• Prove that ker φ and im φ are subgroups of G and H, respectively.

$$sgn: S_n \to \mathbb{Z}^{\times}$$

э

$$sgn: S_n \to \mathbb{Z}^{\times}$$

• Alternating group A_n is just the kernel $A_n = \text{ker}(sgn)$.

$$sgn: S_n \to \mathbb{Z}^{\times}$$

• Alternating group A_n is just the kernel $A_n = \text{ker}(sgn)$.

Definition

A homomorphism $\varphi \colon G \to H$ is called an **isomorphism** if φ is a bijection. Two groups G, H are called **isomorphic** if there exists an isomorphism $\varphi \colon G \to H$.

$$sgn: S_n \to \mathbb{Z}^{\times}$$

• Alternating group A_n is just the kernel $A_n = \text{ker}(sgn)$.

Definition

A homomorphism $\varphi: G \to H$ is called an **isomorphism** if φ is a bijection. Two groups G, H are called **isomorphic** if there exists an isomorphism $\varphi: G \to H$.

• Isomorphic groups are considered "the same" in group theory.

For all the homomorphisms below, what are their kernels and images?

• Between any groups G, H there is a trivial homomorphism $\varphi: G \to H$, given by $\varphi(g) = e_H$, for all $g \in G$.

- Between any groups G, H there is a trivial homomorphism $\varphi: G \to H$, given by $\varphi(g) = e_H$, for all $g \in G$.
- The map $n \mapsto n \pmod{m}$ defines a homomorphism $\mathbb{Z} \to \mathbb{Z}/m$.

- Between any groups G, H there is a trivial homomorphism $\varphi: G \to H$, given by $\varphi(g) = e_H$, for all $g \in G$.
- The map $n \mapsto n \pmod{m}$ defines a homomorphism $\mathbb{Z} \to \mathbb{Z}/m$.
- Let GL_n(ℝ) denote the group of invertible n × n matrices. Then taking determinant det defines a homomorphism det: GL_n(ℝ) → ℝ[×].

- Between any groups G, H there is a trivial homomorphism $\varphi: G \to H$, given by $\varphi(g) = e_H$, for all $g \in G$.
- The map $n \mapsto n \pmod{m}$ defines a homomorphism $\mathbb{Z} \to \mathbb{Z}/m$.
- Let GL_n(ℝ) denote the group of invertible n × n matrices. Then taking determinant det defines a homomorphism det: GL_n(ℝ) → ℝ[×].
- There are no nontrivial homomorphisms Z/m → Z, but there are non-trivial homomorphism in the opposite direction (see above).

- Between any groups G, H there is a trivial homomorphism $\varphi: G \to H$, given by $\varphi(g) = e_H$, for all $g \in G$.
- The map $n \mapsto n \pmod{m}$ defines a homomorphism $\mathbb{Z} \to \mathbb{Z}/m$.
- Let GL_n(ℝ) denote the group of invertible n × n matrices. Then taking determinant det defines a homomorphism det: GL_n(ℝ) → ℝ[×].
- There are no nontrivial homomorphisms Z/m → Z, but there are non-trivial homomorphism in the opposite direction (see above).
- For a fixed m∈ Z, the map φ_m: Z → Z given by φ_m(n) = nm defines a homomorphism.

For all the homomorphisms below, what are their kernels and images?

- Between any groups G, H there is a **trivial** homomorphism $\varphi: G \to H$, given by $\varphi(g) = e_H$, for all $g \in G$.
- The map $n \mapsto n \pmod{m}$ defines a homomorphism $\mathbb{Z} \to \mathbb{Z}/m$.
- Let GL_n(ℝ) denote the group of invertible n × n matrices. Then taking determinant det defines a homomorphism det: GL_n(ℝ) → ℝ[×].
- There are no nontrivial homomorphisms Z/m→ Z, but there are non-trivial homomorphism in the opposite direction (see above).
- For a fixed $m \in \mathbb{Z}$, the map $\varphi_m \colon \mathbb{Z} \to \mathbb{Z}$ given by $\varphi_m(n) = nm$ defines a homomorphism.
- For any abelian group G, the map φ_m: G → G given by g → g^m is a homomorphism.

(日) (同) (三) (三)

For all the homomorphisms below, what are their kernels and images?

- Between any groups G, H there is a trivial homomorphism $\varphi: G \to H$, given by $\varphi(g) = e_H$, for all $g \in G$.
- The map $n \mapsto n \pmod{m}$ defines a homomorphism $\mathbb{Z} \to \mathbb{Z}/m$.
- Let GL_n(ℝ) denote the group of invertible n × n matrices. Then taking determinant det defines a homomorphism det: GL_n(ℝ) → ℝ[×].
- There are no nontrivial homomorphisms Z/m→ Z, but there are non-trivial homomorphism in the opposite direction (see above).
- For a fixed $m \in \mathbb{Z}$, the map $\varphi_m \colon \mathbb{Z} \to \mathbb{Z}$ given by $\varphi_m(n) = nm$ defines a homomorphism.
- For any abelian group G, the map φ_m: G → G given by g → g^m is a homomorphism.
- The same map for **non-abelian group** is **not necessarily** a homomorphism (can you give an example?).

イロト イヨト イヨト イヨト